Quantifying Force and Viscoelasticity Inside Living Cells Using an Active-Passive Calibrated Optical Trap.
نویسندگان
چکیده
As described in the previous chapters, optical tweezers have become a tool of precision for in vitro single-molecule investigations, where the single molecule of interest most often is studied in purified form in an experimental assay with a well-controlled fluidic environment. A well-controlled fluidic environment implies that the physical properties of the liquid, most notably the viscosity, are known and the fluidic environment can, for calibrational purposes, be treated as a simple liquid.In vivo, however, optical tweezers have primarily been used as a tool of manipulation and not so often for precise quantitative force measurements, due to the unknown value of the spring constant of the optical trap formed within the cell's viscoelastic cytoplasm. Here, we describe a method for utilizing optical tweezers for quantitative in vivo force measurements. The experimental protocol and the protocol for data analysis rely on two types of experiments, passive observation of the thermal motion of a trapped object inside a living cell, followed by observations of the response of the trapped object when subject to controlled oscillations of the optical trap. One advantage of this calibration method is that the size and refractive properties of the trapped object and the viscoelastic properties of its environment need not be known. We explain the protocol and demonstrate its use with experiments of trapped granules inside live S. pombe cells.
منابع مشابه
Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells.
With the success of in vitro single-molecule force measurements obtained in recent years, the next step is to perform quantitative force measurements inside a living cell. Optical traps have proven excellent tools for manipulation, also in vivo, where they can be essentially non-invasive under correct wavelength and exposure conditions. It is a pre-requisite for in vivo quantitative force measu...
متن کاملPassive and active microrheology for cross-linked F-actin networks in vitro.
Actin filament (F-actin) is one of the dominant structural constituents in the cytoskeleton. Orchestrated by various actin-binding proteins (ABPs), F-actin is assembled into higher-order structures such as bundles and networks that provide mechanical support for the cell and play important roles in numerous cellular processes. Although mechanical properties of F-actin networks have been extensi...
متن کاملFeedback-tracking microrheology in living cells
Living cells are composed of active materials, in which forces are generated by the energy derived from metabolism. Forces and structures self-organize to shape the cell and drive its dynamic functions. Understanding the out-of-equilibrium mechanics is challenging because constituent materials, the cytoskeleton and the cytosol, are extraordinarily heterogeneous, and their physical properties ar...
متن کاملIn vivo optical trapping indicates kinesin's stall force is reduced by dynein during intracellular transport.
Kinesin and dynein are fundamental components of intracellular transport, but their interactions when simultaneously present on cargos are unknown. We built an optical trap that can be calibrated in vivo during data acquisition for each individual cargo to measure forces in living cells. Comparing directional stall forces in vivo and in vitro, we found evidence that cytoplasmic dynein is active...
متن کاملActive-passive calibration of optical tweezers in viscoelastic media.
In order to use optical tweezers as a force measuring tool inside a viscoelastic medium such as the cytoplasm of a living cell, it is crucial to perform an exact force calibration within the complex medium. This is a nontrivial task, as many of the physical characteristics of the medium and probe, e.g., viscosity, elasticity, shape, and density, are often unknown. Here, we suggest how to calibr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Methods in molecular biology
دوره 1486 شماره
صفحات -
تاریخ انتشار 2017